Metamath Proof Explorer


Definition df-nmfn

Description: Define the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-nmfn norm fn = t sup x | z norm z 1 x = t z * <

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnmf class norm fn
1 vt setvar t
2 cc class
3 cmap class 𝑚
4 chba class
5 2 4 3 co class
6 vx setvar x
7 vz setvar z
8 cno class norm
9 7 cv setvar z
10 9 8 cfv class norm z
11 cle class
12 c1 class 1
13 10 12 11 wbr wff norm z 1
14 6 cv setvar x
15 cabs class abs
16 1 cv setvar t
17 9 16 cfv class t z
18 17 15 cfv class t z
19 14 18 wceq wff x = t z
20 13 19 wa wff norm z 1 x = t z
21 20 7 4 wrex wff z norm z 1 x = t z
22 21 6 cab class x | z norm z 1 x = t z
23 cxr class *
24 clt class <
25 22 23 24 csup class sup x | z norm z 1 x = t z * <
26 1 5 25 cmpt class t sup x | z norm z 1 x = t z * <
27 0 26 wceq wff norm fn = t sup x | z norm z 1 x = t z * <