Metamath Proof Explorer


Definition df-nmfn

Description: Define the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-nmfn normfn=tsupx|znormz1x=tz*<

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnmf classnormfn
1 vt setvart
2 cc class
3 cmap class𝑚
4 chba class
5 2 4 3 co class
6 vx setvarx
7 vz setvarz
8 cno classnorm
9 7 cv setvarz
10 9 8 cfv classnormz
11 cle class
12 c1 class1
13 10 12 11 wbr wffnormz1
14 6 cv setvarx
15 cabs classabs
16 1 cv setvart
17 9 16 cfv classtz
18 17 15 cfv classtz
19 14 18 wceq wffx=tz
20 13 19 wa wffnormz1x=tz
21 20 7 4 wrex wffznormz1x=tz
22 21 6 cab classx|znormz1x=tz
23 cxr class*
24 clt class<
25 22 23 24 csup classsupx|znormz1x=tz*<
26 1 5 25 cmpt classtsupx|znormz1x=tz*<
27 0 26 wceq wffnormfn=tsupx|znormz1x=tz*<