Metamath Proof Explorer


Definition df-nmop

Description: Define the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion df-nmop norm op = t sup x | z norm z 1 x = norm t z * <

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnop class norm op
1 vt setvar t
2 chba class
3 cmap class 𝑚
4 2 2 3 co class
5 vx setvar x
6 vz setvar z
7 cno class norm
8 6 cv setvar z
9 8 7 cfv class norm z
10 cle class
11 c1 class 1
12 9 11 10 wbr wff norm z 1
13 5 cv setvar x
14 1 cv setvar t
15 8 14 cfv class t z
16 15 7 cfv class norm t z
17 13 16 wceq wff x = norm t z
18 12 17 wa wff norm z 1 x = norm t z
19 18 6 2 wrex wff z norm z 1 x = norm t z
20 19 5 cab class x | z norm z 1 x = norm t z
21 cxr class *
22 clt class <
23 20 21 22 csup class sup x | z norm z 1 x = norm t z * <
24 1 4 23 cmpt class t sup x | z norm z 1 x = norm t z * <
25 0 24 wceq wff norm op = t sup x | z norm z 1 x = norm t z * <