Metamath Proof Explorer


Definition df-norec

Description: Define the recursion generator for surreal functions of one variable. This generator creates a recursive function of surreals from their value on their left and right sets. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion df-norec Could not format assertion : No typesetting found for |- norec ( F ) = frecs ( { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } , No , F ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF class F
1 0 cnorec Could not format norec ( F ) : No typesetting found for class norec ( F ) with typecode class
2 vx setvar x
3 vy setvar y
4 2 cv setvar x
5 cleft Could not format _Left : No typesetting found for class _Left with typecode class
6 3 cv setvar y
7 6 5 cfv Could not format ( _Left ` y ) : No typesetting found for class ( _Left ` y ) with typecode class
8 cright Could not format _Right : No typesetting found for class _Right with typecode class
9 6 8 cfv Could not format ( _Right ` y ) : No typesetting found for class ( _Right ` y ) with typecode class
10 7 9 cun Could not format ( ( _Left ` y ) u. ( _Right ` y ) ) : No typesetting found for class ( ( _Left ` y ) u. ( _Right ` y ) ) with typecode class
11 4 10 wcel Could not format x e. ( ( _Left ` y ) u. ( _Right ` y ) ) : No typesetting found for wff x e. ( ( _Left ` y ) u. ( _Right ` y ) ) with typecode wff
12 11 2 3 copab Could not format { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } : No typesetting found for class { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } with typecode class
13 csur class No
14 13 12 0 cfrecs Could not format frecs ( { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } , No , F ) : No typesetting found for class frecs ( { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } , No , F ) with typecode class
15 1 14 wceq Could not format norec ( F ) = frecs ( { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } , No , F ) : No typesetting found for wff norec ( F ) = frecs ( { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } , No , F ) with typecode wff