Metamath Proof Explorer


Definition df-nq

Description: Define class of positive fractions. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-2.2 of Gleason p. 117. (Contributed by NM, 16-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-nq 𝑸 = x 𝑵 × 𝑵 | y 𝑵 × 𝑵 x ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnq class 𝑸
1 vx setvar x
2 cnpi class 𝑵
3 2 2 cxp class 𝑵 × 𝑵
4 vy setvar y
5 1 cv setvar x
6 ceq class ~ 𝑸
7 4 cv setvar y
8 5 7 6 wbr wff x ~ 𝑸 y
9 c2nd class 2 nd
10 7 9 cfv class 2 nd y
11 clti class < 𝑵
12 5 9 cfv class 2 nd x
13 10 12 11 wbr wff 2 nd y < 𝑵 2 nd x
14 13 wn wff ¬ 2 nd y < 𝑵 2 nd x
15 8 14 wi wff x ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd x
16 15 4 3 wral wff y 𝑵 × 𝑵 x ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd x
17 16 1 3 crab class x 𝑵 × 𝑵 | y 𝑵 × 𝑵 x ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd x
18 0 17 wceq wff 𝑸 = x 𝑵 × 𝑵 | y 𝑵 × 𝑵 x ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd x