Metamath Proof Explorer


Definition df-numer

Description: The canonical numerator of a rational is the numerator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion df-numer numer = y 1 st ι x × | 1 st x gcd 2 nd x = 1 y = 1 st x 2 nd x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnumer class numer
1 vy setvar y
2 cq class
3 c1st class 1 st
4 vx setvar x
5 cz class
6 cn class
7 5 6 cxp class ×
8 4 cv setvar x
9 8 3 cfv class 1 st x
10 cgcd class gcd
11 c2nd class 2 nd
12 8 11 cfv class 2 nd x
13 9 12 10 co class 1 st x gcd 2 nd x
14 c1 class 1
15 13 14 wceq wff 1 st x gcd 2 nd x = 1
16 1 cv setvar y
17 cdiv class ÷
18 9 12 17 co class 1 st x 2 nd x
19 16 18 wceq wff y = 1 st x 2 nd x
20 15 19 wa wff 1 st x gcd 2 nd x = 1 y = 1 st x 2 nd x
21 20 4 7 crio class ι x × | 1 st x gcd 2 nd x = 1 y = 1 st x 2 nd x
22 21 3 cfv class 1 st ι x × | 1 st x gcd 2 nd x = 1 y = 1 st x 2 nd x
23 1 2 22 cmpt class y 1 st ι x × | 1 st x gcd 2 nd x = 1 y = 1 st x 2 nd x
24 0 23 wceq wff numer = y 1 st ι x × | 1 st x gcd 2 nd x = 1 y = 1 st x 2 nd x