Metamath Proof Explorer


Definition df-nv

Description: Define the class of all normed complex vector spaces. (Contributed by NM, 11-Nov-2006) (New usage is discouraged.)

Ref Expression
Assertion df-nv NrmCVec = g s n | g s CVec OLD n : ran g x ran g n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnv class NrmCVec
1 vg setvar g
2 vs setvar s
3 vn setvar n
4 1 cv setvar g
5 2 cv setvar s
6 4 5 cop class g s
7 cvc class CVec OLD
8 6 7 wcel wff g s CVec OLD
9 3 cv setvar n
10 4 crn class ran g
11 cr class
12 10 11 9 wf wff n : ran g
13 vx setvar x
14 13 cv setvar x
15 14 9 cfv class n x
16 cc0 class 0
17 15 16 wceq wff n x = 0
18 cgi class GId
19 4 18 cfv class GId g
20 14 19 wceq wff x = GId g
21 17 20 wi wff n x = 0 x = GId g
22 vy setvar y
23 cc class
24 22 cv setvar y
25 24 14 5 co class y s x
26 25 9 cfv class n y s x
27 cabs class abs
28 24 27 cfv class y
29 cmul class ×
30 28 15 29 co class y n x
31 26 30 wceq wff n y s x = y n x
32 31 22 23 wral wff y n y s x = y n x
33 14 24 4 co class x g y
34 33 9 cfv class n x g y
35 cle class
36 caddc class +
37 24 9 cfv class n y
38 15 37 36 co class n x + n y
39 34 38 35 wbr wff n x g y n x + n y
40 39 22 10 wral wff y ran g n x g y n x + n y
41 21 32 40 w3a wff n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y
42 41 13 10 wral wff x ran g n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y
43 8 12 42 w3a wff g s CVec OLD n : ran g x ran g n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y
44 43 1 2 3 coprab class g s n | g s CVec OLD n : ran g x ran g n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y
45 0 44 wceq wff NrmCVec = g s n | g s CVec OLD n : ran g x ran g n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y