Metamath Proof Explorer


Definition df-o1

Description: Define the set of eventually bounded functions. We don't bother to build the full conception of big-O notation, because we can represent any big-O in terms of O(1) and division, and any little-O in terms of a limit and division. We could also use limsup for this, but it only works on integer sequences, while this will work for real sequences or integer sequences. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion df-o1 𝑂1=f𝑝𝑚|xmydomfx+∞fym

Detailed syntax breakdown

Step Hyp Ref Expression
0 co1 class𝑂1
1 vf setvarf
2 cc class
3 cpm class𝑝𝑚
4 cr class
5 2 4 3 co class𝑝𝑚
6 vx setvarx
7 vm setvarm
8 vy setvary
9 1 cv setvarf
10 9 cdm classdomf
11 6 cv setvarx
12 cico class.
13 cpnf class+∞
14 11 13 12 co classx+∞
15 10 14 cin classdomfx+∞
16 cabs classabs
17 8 cv setvary
18 17 9 cfv classfy
19 18 16 cfv classfy
20 cle class
21 7 cv setvarm
22 19 21 20 wbr wfffym
23 22 8 15 wral wffydomfx+∞fym
24 23 7 4 wrex wffmydomfx+∞fym
25 24 6 4 wrex wffxmydomfx+∞fym
26 25 1 5 crab classf𝑝𝑚|xmydomfx+∞fym
27 0 26 wceq wff𝑂1=f𝑝𝑚|xmydomfx+∞fym