Metamath Proof Explorer


Definition df-oadd

Description: Define the ordinal addition operation. (Contributed by NM, 3-May-1995)

Ref Expression
Assertion df-oadd + 𝑜 = x On , y On rec z V suc z x y

Detailed syntax breakdown

Step Hyp Ref Expression
0 coa class + 𝑜
1 vx setvar x
2 con0 class On
3 vy setvar y
4 vz setvar z
5 cvv class V
6 4 cv setvar z
7 6 csuc class suc z
8 4 5 7 cmpt class z V suc z
9 1 cv setvar x
10 8 9 crdg class rec z V suc z x
11 3 cv setvar y
12 11 10 cfv class rec z V suc z x y
13 1 3 2 2 12 cmpo class x On , y On rec z V suc z x y
14 0 13 wceq wff + 𝑜 = x On , y On rec z V suc z x y