Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal arithmetic
df-oadd
Next ⟩
df-omul
Metamath Proof Explorer
Ascii
Unicode
Definition
df-oadd
Description:
Define the ordinal addition operation.
(Contributed by
NM
, 3-May-1995)
Ref
Expression
Assertion
df-oadd
⊢
+
𝑜
=
x
∈
On
,
y
∈
On
⟼
rec
⁡
z
∈
V
⟼
suc
⁡
z
x
⁡
y
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
coa
class
+
𝑜
1
vx
setvar
x
2
con0
class
On
3
vy
setvar
y
4
vz
setvar
z
5
cvv
class
V
6
4
cv
setvar
z
7
6
csuc
class
suc
⁡
z
8
4
5
7
cmpt
class
z
∈
V
⟼
suc
⁡
z
9
1
cv
setvar
x
10
8
9
crdg
class
rec
⁡
z
∈
V
⟼
suc
⁡
z
x
11
3
cv
setvar
y
12
11
10
cfv
class
rec
⁡
z
∈
V
⟼
suc
⁡
z
x
⁡
y
13
1
3
2
2
12
cmpo
class
x
∈
On
,
y
∈
On
⟼
rec
⁡
z
∈
V
⟼
suc
⁡
z
x
⁡
y
14
0
13
wceq
wff
+
𝑜
=
x
∈
On
,
y
∈
On
⟼
rec
⁡
z
∈
V
⟼
suc
⁡
z
x
⁡
y