Metamath Proof Explorer


Definition df-ocv

Description: Define the orthocomplement function in a given set (which usually is a pre-Hilbert space): it associates with a subset its orthogonal subset (which in the case of a closed linear subspace is its orthocomplement). (Contributed by NM, 7-Oct-2011)

Ref Expression
Assertion df-ocv ocv = h V s 𝒫 Base h x Base h | y s x 𝑖 h y = 0 Scalar h

Detailed syntax breakdown

Step Hyp Ref Expression
0 cocv class ocv
1 vh setvar h
2 cvv class V
3 vs setvar s
4 cbs class Base
5 1 cv setvar h
6 5 4 cfv class Base h
7 6 cpw class 𝒫 Base h
8 vx setvar x
9 vy setvar y
10 3 cv setvar s
11 8 cv setvar x
12 cip class 𝑖
13 5 12 cfv class 𝑖 h
14 9 cv setvar y
15 11 14 13 co class x 𝑖 h y
16 c0g class 0 𝑔
17 csca class Scalar
18 5 17 cfv class Scalar h
19 18 16 cfv class 0 Scalar h
20 15 19 wceq wff x 𝑖 h y = 0 Scalar h
21 20 9 10 wral wff y s x 𝑖 h y = 0 Scalar h
22 21 8 6 crab class x Base h | y s x 𝑖 h y = 0 Scalar h
23 3 7 22 cmpt class s 𝒫 Base h x Base h | y s x 𝑖 h y = 0 Scalar h
24 1 2 23 cmpt class h V s 𝒫 Base h x Base h | y s x 𝑖 h y = 0 Scalar h
25 0 24 wceq wff ocv = h V s 𝒫 Base h x Base h | y s x 𝑖 h y = 0 Scalar h