Metamath Proof Explorer


Definition df-ofr

Description: Define the function relation map. The definition is designed so that if R is a binary relation, then oR R is the analogous relation on functions which is true when each element of the left function relates to the corresponding element of the right function. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion df-ofr r R = f g | x dom f dom g f x R g x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR class R
1 0 cofr class r R
2 vf setvar f
3 vg setvar g
4 vx setvar x
5 2 cv setvar f
6 5 cdm class dom f
7 3 cv setvar g
8 7 cdm class dom g
9 6 8 cin class dom f dom g
10 4 cv setvar x
11 10 5 cfv class f x
12 10 7 cfv class g x
13 11 12 0 wbr wff f x R g x
14 13 4 9 wral wff x dom f dom g f x R g x
15 14 2 3 copab class f g | x dom f dom g f x R g x
16 1 15 wceq wff r R = f g | x dom f dom g f x R g x