Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal arithmetic
df-omul
Next ⟩
df-oexp
Metamath Proof Explorer
Ascii
Unicode
Definition
df-omul
Description:
Define the ordinal multiplication operation.
(Contributed by
NM
, 26-Aug-1995)
Ref
Expression
Assertion
df-omul
⊢
⋅
𝑜
=
x
∈
On
,
y
∈
On
⟼
rec
⁡
z
∈
V
⟼
z
+
𝑜
x
∅
⁡
y
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
comu
class
⋅
𝑜
1
vx
setvar
x
2
con0
class
On
3
vy
setvar
y
4
vz
setvar
z
5
cvv
class
V
6
4
cv
setvar
z
7
coa
class
+
𝑜
8
1
cv
setvar
x
9
6
8
7
co
class
z
+
𝑜
x
10
4
5
9
cmpt
class
z
∈
V
⟼
z
+
𝑜
x
11
c0
class
∅
12
10
11
crdg
class
rec
⁡
z
∈
V
⟼
z
+
𝑜
x
∅
13
3
cv
setvar
y
14
13
12
cfv
class
rec
⁡
z
∈
V
⟼
z
+
𝑜
x
∅
⁡
y
15
1
3
2
2
14
cmpo
class
x
∈
On
,
y
∈
On
⟼
rec
⁡
z
∈
V
⟼
z
+
𝑜
x
∅
⁡
y
16
0
15
wceq
wff
⋅
𝑜
=
x
∈
On
,
y
∈
On
⟼
rec
⁡
z
∈
V
⟼
z
+
𝑜
x
∅
⁡
y