Metamath Proof Explorer


Definition df-oposet

Description: Define the class of orthoposets, which are bounded posets with an orthocomplementation operation. Note that ( Base p ) e. dom ( lub p ) means there is an upper bound 1. , and similarly for the 0. element. (Contributed by NM, 20-Oct-2011) (Revised by NM, 13-Sep-2018)

Ref Expression
Assertion df-oposet OP = p Poset | Base p dom lub p Base p dom glb p o o = oc p a Base p b Base p o a Base p o o a = a a p b o b p o a a join p o a = 1. p a meet p o a = 0. p

Detailed syntax breakdown

Step Hyp Ref Expression
0 cops class OP
1 vp setvar p
2 cpo class Poset
3 cbs class Base
4 1 cv setvar p
5 4 3 cfv class Base p
6 club class lub
7 4 6 cfv class lub p
8 7 cdm class dom lub p
9 5 8 wcel wff Base p dom lub p
10 cglb class glb
11 4 10 cfv class glb p
12 11 cdm class dom glb p
13 5 12 wcel wff Base p dom glb p
14 9 13 wa wff Base p dom lub p Base p dom glb p
15 vo setvar o
16 15 cv setvar o
17 coc class oc
18 4 17 cfv class oc p
19 16 18 wceq wff o = oc p
20 va setvar a
21 vb setvar b
22 20 cv setvar a
23 22 16 cfv class o a
24 23 5 wcel wff o a Base p
25 23 16 cfv class o o a
26 25 22 wceq wff o o a = a
27 cple class le
28 4 27 cfv class p
29 21 cv setvar b
30 22 29 28 wbr wff a p b
31 29 16 cfv class o b
32 31 23 28 wbr wff o b p o a
33 30 32 wi wff a p b o b p o a
34 24 26 33 w3a wff o a Base p o o a = a a p b o b p o a
35 cjn class join
36 4 35 cfv class join p
37 22 23 36 co class a join p o a
38 cp1 class 1.
39 4 38 cfv class 1. p
40 37 39 wceq wff a join p o a = 1. p
41 cmee class meet
42 4 41 cfv class meet p
43 22 23 42 co class a meet p o a
44 cp0 class 0.
45 4 44 cfv class 0. p
46 43 45 wceq wff a meet p o a = 0. p
47 34 40 46 w3a wff o a Base p o o a = a a p b o b p o a a join p o a = 1. p a meet p o a = 0. p
48 47 21 5 wral wff b Base p o a Base p o o a = a a p b o b p o a a join p o a = 1. p a meet p o a = 0. p
49 48 20 5 wral wff a Base p b Base p o a Base p o o a = a a p b o b p o a a join p o a = 1. p a meet p o a = 0. p
50 19 49 wa wff o = oc p a Base p b Base p o a Base p o o a = a a p b o b p o a a join p o a = 1. p a meet p o a = 0. p
51 50 15 wex wff o o = oc p a Base p b Base p o a Base p o o a = a a p b o b p o a a join p o a = 1. p a meet p o a = 0. p
52 14 51 wa wff Base p dom lub p Base p dom glb p o o = oc p a Base p b Base p o a Base p o o a = a a p b o b p o a a join p o a = 1. p a meet p o a = 0. p
53 52 1 2 crab class p Poset | Base p dom lub p Base p dom glb p o o = oc p a Base p b Base p o a Base p o o a = a a p b o b p o a a join p o a = 1. p a meet p o a = 0. p
54 0 53 wceq wff OP = p Poset | Base p dom lub p Base p dom glb p o o = oc p a Base p b Base p o a Base p o o a = a a p b o b p o a a join p o a = 1. p a meet p o a = 0. p