Metamath Proof Explorer


Definition df-oppf

Description: Definition of the operation generating opposite functors. Definition 3.41 of Adamek p. 39. The object part of the functor is unchanged while the morphism part is transposed due to reversed direction of arrows in the opposite category. The opposite functor is a functor on opposite categories ( oppfoppc ). (Contributed by Zhi Wang, 4-Nov-2025) Better reverse closure. (Revised by Zhi Wang, 13-Nov-2025)

Ref Expression
Assertion df-oppf Could not format assertion : No typesetting found for |- oppFunc = ( f e. _V , g e. _V |-> if ( ( Rel g /\ Rel dom g ) , <. f , tpos g >. , (/) ) ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 coppf Could not format oppFunc : No typesetting found for class oppFunc with typecode class
1 vf setvar f
2 cvv class V
3 vg setvar g
4 3 cv setvar g
5 4 wrel wff Rel g
6 4 cdm class dom g
7 6 wrel wff Rel dom g
8 5 7 wa wff Rel g Rel dom g
9 1 cv setvar f
10 4 ctpos class tpos g
11 9 10 cop class f tpos g
12 c0 class
13 8 11 12 cif class if Rel g Rel dom g f tpos g
14 1 3 2 2 13 cmpo class f V , g V if Rel g Rel dom g f tpos g
15 0 14 wceq Could not format oppFunc = ( f e. _V , g e. _V |-> if ( ( Rel g /\ Rel dom g ) , <. f , tpos g >. , (/) ) ) : No typesetting found for wff oppFunc = ( f e. _V , g e. _V |-> if ( ( Rel g /\ Rel dom g ) , <. f , tpos g >. , (/) ) ) with typecode wff