Metamath Proof Explorer


Definition df-ovol

Description: Define the outer Lebesgue measure for subsets of the reals. Here f is a function from the positive integers to pairs <. a , b >. with a <_ b , and the outer volume of the set x is the infimum over all such functions such that the union of the open intervals ( a , b ) covers x of the sum of b - a . (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 17-Sep-2020)

Ref Expression
Assertion df-ovol vol * = x 𝒫 sup y * | f 2 x ran . f y = sup ran seq 1 + abs f * < * <

Detailed syntax breakdown

Step Hyp Ref Expression
0 covol class vol *
1 vx setvar x
2 cr class
3 2 cpw class 𝒫
4 vy setvar y
5 cxr class *
6 vf setvar f
7 cle class
8 2 2 cxp class 2
9 7 8 cin class 2
10 cmap class 𝑚
11 cn class
12 9 11 10 co class 2
13 1 cv setvar x
14 cioo class .
15 6 cv setvar f
16 14 15 ccom class . f
17 16 crn class ran . f
18 17 cuni class ran . f
19 13 18 wss wff x ran . f
20 4 cv setvar y
21 c1 class 1
22 caddc class +
23 cabs class abs
24 cmin class
25 23 24 ccom class abs
26 25 15 ccom class abs f
27 22 26 21 cseq class seq 1 + abs f
28 27 crn class ran seq 1 + abs f
29 clt class <
30 28 5 29 csup class sup ran seq 1 + abs f * <
31 20 30 wceq wff y = sup ran seq 1 + abs f * <
32 19 31 wa wff x ran . f y = sup ran seq 1 + abs f * <
33 32 6 12 wrex wff f 2 x ran . f y = sup ran seq 1 + abs f * <
34 33 4 5 crab class y * | f 2 x ran . f y = sup ran seq 1 + abs f * <
35 34 5 29 cinf class sup y * | f 2 x ran . f y = sup ran seq 1 + abs f * < * <
36 1 3 35 cmpt class x 𝒫 sup y * | f 2 x ran . f y = sup ran seq 1 + abs f * < * <
37 0 36 wceq wff vol * = x 𝒫 sup y * | f 2 x ran . f y = sup ran seq 1 + abs f * < * <