Metamath Proof Explorer


Definition df-p0

Description: Define poset zero. (Contributed by NM, 12-Oct-2011)

Ref Expression
Assertion df-p0 0. = p V glb p Base p

Detailed syntax breakdown

Step Hyp Ref Expression
0 cp0 class 0.
1 vp setvar p
2 cvv class V
3 cglb class glb
4 1 cv setvar p
5 4 3 cfv class glb p
6 cbs class Base
7 4 6 cfv class Base p
8 7 5 cfv class glb p Base p
9 1 2 8 cmpt class p V glb p Base p
10 0 9 wceq wff 0. = p V glb p Base p