Database
BASIC ORDER THEORY
Totally ordered sets (tosets)
df-p0
Next ⟩
df-p1
Metamath Proof Explorer
Ascii
Unicode
Definition
df-p0
Description:
Define poset zero.
(Contributed by
NM
, 12-Oct-2011)
Ref
Expression
Assertion
df-p0
⊢
0.
=
p
∈
V
⟼
glb
⁡
p
⁡
Base
p
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cp0
class
0.
1
vp
setvar
p
2
cvv
class
V
3
cglb
class
glb
4
1
cv
setvar
p
5
4
3
cfv
class
glb
⁡
p
6
cbs
class
Base
7
4
6
cfv
class
Base
p
8
7
5
cfv
class
glb
⁡
p
⁡
Base
p
9
1
2
8
cmpt
class
p
∈
V
⟼
glb
⁡
p
⁡
Base
p
10
0
9
wceq
wff
0.
=
p
∈
V
⟼
glb
⁡
p
⁡
Base
p