Metamath Proof Explorer


Definition df-ph

Description: Define the class of all complex inner product spaces. An inner product space is a normed vector space whose norm satisfies the parallelogram law (a property that induces an inner product). Based on Exercise 4(b) of ReedSimon p. 63. The vector operation is g , the scalar product is s , and the norm is n . An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion df-ph CPreHil OLD = NrmCVec g s n | x ran g y ran g n x g y 2 + n x g -1 s y 2 = 2 n x 2 + n y 2

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccphlo class CPreHil OLD
1 cnv class NrmCVec
2 vg setvar g
3 vs setvar s
4 vn setvar n
5 vx setvar x
6 2 cv setvar g
7 6 crn class ran g
8 vy setvar y
9 4 cv setvar n
10 5 cv setvar x
11 8 cv setvar y
12 10 11 6 co class x g y
13 12 9 cfv class n x g y
14 cexp class ^
15 c2 class 2
16 13 15 14 co class n x g y 2
17 caddc class +
18 c1 class 1
19 18 cneg class -1
20 3 cv setvar s
21 19 11 20 co class -1 s y
22 10 21 6 co class x g -1 s y
23 22 9 cfv class n x g -1 s y
24 23 15 14 co class n x g -1 s y 2
25 16 24 17 co class n x g y 2 + n x g -1 s y 2
26 cmul class ×
27 10 9 cfv class n x
28 27 15 14 co class n x 2
29 11 9 cfv class n y
30 29 15 14 co class n y 2
31 28 30 17 co class n x 2 + n y 2
32 15 31 26 co class 2 n x 2 + n y 2
33 25 32 wceq wff n x g y 2 + n x g -1 s y 2 = 2 n x 2 + n y 2
34 33 8 7 wral wff y ran g n x g y 2 + n x g -1 s y 2 = 2 n x 2 + n y 2
35 34 5 7 wral wff x ran g y ran g n x g y 2 + n x g -1 s y 2 = 2 n x 2 + n y 2
36 35 2 3 4 coprab class g s n | x ran g y ran g n x g y 2 + n x g -1 s y 2 = 2 n x 2 + n y 2
37 1 36 cin class NrmCVec g s n | x ran g y ran g n x g y 2 + n x g -1 s y 2 = 2 n x 2 + n y 2
38 0 37 wceq wff CPreHil OLD = NrmCVec g s n | x ran g y ran g n x g y 2 + n x g -1 s y 2 = 2 n x 2 + n y 2