Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Euler's theorem
df-phi
Metamath Proof Explorer
Description: Define the Euler phi function (also called "Euler totient function"),
which counts the number of integers less than n and coprime to it,
see definition in ApostolNT p. 25. (Contributed by Mario Carneiro , 23-Feb-2014)
Ref
Expression
Assertion
df-phi
⊢ ϕ = n ∈ ℕ ⟼ x ∈ 1 … n | x gcd n = 1
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cphi
class ϕ
1
vn
setvar n
2
cn
class ℕ
3
chash
class .
4
vx
setvar x
5
c1
class 1
6
cfz
class …
7
1
cv
setvar n
8
5 7 6
co
class 1 … n
9
4
cv
setvar x
10
cgcd
class gcd
11
9 7 10
co
class x gcd n
12
11 5
wceq
wff x gcd n = 1
13
12 4 8
crab
class x ∈ 1 … n | x gcd n = 1
14
13 3
cfv
class x ∈ 1 … n | x gcd n = 1
15
1 2 14
cmpt
class n ∈ ℕ ⟼ x ∈ 1 … n | x gcd n = 1
16
0 15
wceq
wff ϕ = n ∈ ℕ ⟼ x ∈ 1 … n | x gcd n = 1