Metamath Proof Explorer


Definition df-pjh

Description: Define the projection function on a Hilbert space, as a mapping from the Hilbert lattice to a function on Hilbert space. Every closed subspace is associated with a unique projection function. Remark in Kalmbach p. 66, adopted as a definition. ( projhH )A is the projection of vector A onto closed subspace H . Note that the range of projh is the set of all projection operators, so T e. ran projh means that T is a projection operator. (Contributed by NM, 23-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion df-pjh proj = h C x ι z h | y h x = z + y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpjh class proj
1 vh setvar h
2 cch class C
3 vx setvar x
4 chba class
5 vz setvar z
6 1 cv setvar h
7 vy setvar y
8 cort class
9 6 8 cfv class h
10 3 cv setvar x
11 5 cv setvar z
12 cva class +
13 7 cv setvar y
14 11 13 12 co class z + y
15 10 14 wceq wff x = z + y
16 15 7 9 wrex wff y h x = z + y
17 16 5 6 crio class ι z h | y h x = z + y
18 3 4 17 cmpt class x ι z h | y h x = z + y
19 1 2 18 cmpt class h C x ι z h | y h x = z + y
20 0 19 wceq wff proj = h C x ι z h | y h x = z + y