Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Dedekind-cut construction of real and complex numbers
df-plp
Metamath Proof Explorer
Description: Define addition on positive reals. This is a "temporary" set used in
the construction of complex numbers df-c , and is intended to be used
only by the construction. From Proposition 9-3.5 of Gleason p. 123.
(Contributed by NM , 18-Nov-1995) (New usage is discouraged.)
Ref
Expression
Assertion
df-plp
⊢ + 𝑷 = x ∈ 𝑷 , y ∈ 𝑷 ⟼ w | ∃ v ∈ x ∃ u ∈ y w = v + 𝑸 u
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cpp
class + 𝑷
1
vx
setvar x
2
cnp
class 𝑷
3
vy
setvar y
4
vw
setvar w
5
vv
setvar v
6
1
cv
setvar x
7
vu
setvar u
8
3
cv
setvar y
9
4
cv
setvar w
10
5
cv
setvar v
11
cplq
class + 𝑸
12
7
cv
setvar u
13
10 12 11
co
class v + 𝑸 u
14
9 13
wceq
wff w = v + 𝑸 u
15
14 7 8
wrex
wff ∃ u ∈ y w = v + 𝑸 u
16
15 5 6
wrex
wff ∃ v ∈ x ∃ u ∈ y w = v + 𝑸 u
17
16 4
cab
class w | ∃ v ∈ x ∃ u ∈ y w = v + 𝑸 u
18
1 3 2 2 17
cmpo
class x ∈ 𝑷 , y ∈ 𝑷 ⟼ w | ∃ v ∈ x ∃ u ∈ y w = v + 𝑸 u
19
0 18
wceq
wff + 𝑷 = x ∈ 𝑷 , y ∈ 𝑷 ⟼ w | ∃ v ∈ x ∃ u ∈ y w = v + 𝑸 u