Metamath Proof Explorer


Definition df-plpq

Description: Define pre-addition on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. This "pre-addition" operation works directly with ordered pairs of integers. The actual positive fraction addition +Q ( df-plq ) works with the equivalence classes of these ordered pairs determined by the equivalence relation ~Q ( df-enq ). (Analogous remarks apply to the other "pre-" operations in the complex number construction that follows.) From Proposition 9-2.3 of Gleason p. 117. (Contributed by NM, 28-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-plpq + 𝑝𝑸 = x 𝑵 × 𝑵 , y 𝑵 × 𝑵 1 st x 𝑵 2 nd y + 𝑵 1 st y 𝑵 2 nd x 2 nd x 𝑵 2 nd y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cplpq class + 𝑝𝑸
1 vx setvar x
2 cnpi class 𝑵
3 2 2 cxp class 𝑵 × 𝑵
4 vy setvar y
5 c1st class 1 st
6 1 cv setvar x
7 6 5 cfv class 1 st x
8 cmi class 𝑵
9 c2nd class 2 nd
10 4 cv setvar y
11 10 9 cfv class 2 nd y
12 7 11 8 co class 1 st x 𝑵 2 nd y
13 cpli class + 𝑵
14 10 5 cfv class 1 st y
15 6 9 cfv class 2 nd x
16 14 15 8 co class 1 st y 𝑵 2 nd x
17 12 16 13 co class 1 st x 𝑵 2 nd y + 𝑵 1 st y 𝑵 2 nd x
18 15 11 8 co class 2 nd x 𝑵 2 nd y
19 17 18 cop class 1 st x 𝑵 2 nd y + 𝑵 1 st y 𝑵 2 nd x 2 nd x 𝑵 2 nd y
20 1 4 3 3 19 cmpo class x 𝑵 × 𝑵 , y 𝑵 × 𝑵 1 st x 𝑵 2 nd y + 𝑵 1 st y 𝑵 2 nd x 2 nd x 𝑵 2 nd y
21 0 20 wceq wff + 𝑝𝑸 = x 𝑵 × 𝑵 , y 𝑵 × 𝑵 1 st x 𝑵 2 nd y + 𝑵 1 st y 𝑵 2 nd x 2 nd x 𝑵 2 nd y