Metamath Proof Explorer


Definition df-ply

Description: Define the set of polynomials on the complex numbers with coefficients in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion df-ply Poly = x 𝒫 f | n 0 a x 0 0 f = z k = 0 n a k z k

Detailed syntax breakdown

Step Hyp Ref Expression
0 cply class Poly
1 vx setvar x
2 cc class
3 2 cpw class 𝒫
4 vf setvar f
5 vn setvar n
6 cn0 class 0
7 va setvar a
8 1 cv setvar x
9 cc0 class 0
10 9 csn class 0
11 8 10 cun class x 0
12 cmap class 𝑚
13 11 6 12 co class x 0 0
14 4 cv setvar f
15 vz setvar z
16 vk setvar k
17 cfz class
18 5 cv setvar n
19 9 18 17 co class 0 n
20 7 cv setvar a
21 16 cv setvar k
22 21 20 cfv class a k
23 cmul class ×
24 15 cv setvar z
25 cexp class ^
26 24 21 25 co class z k
27 22 26 23 co class a k z k
28 19 27 16 csu class k = 0 n a k z k
29 15 2 28 cmpt class z k = 0 n a k z k
30 14 29 wceq wff f = z k = 0 n a k z k
31 30 7 13 wrex wff a x 0 0 f = z k = 0 n a k z k
32 31 5 6 wrex wff n 0 a x 0 0 f = z k = 0 n a k z k
33 32 4 cab class f | n 0 a x 0 0 f = z k = 0 n a k z k
34 1 3 33 cmpt class x 𝒫 f | n 0 a x 0 0 f = z k = 0 n a k z k
35 0 34 wceq wff Poly = x 𝒫 f | n 0 a x 0 0 f = z k = 0 n a k z k