Metamath Proof Explorer


Definition df-ply1

Description: Define the algebra of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion df-ply1 Poly 1 = r V PwSer 1 r 𝑠 Base 1 𝑜 mPoly r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpl1 class Poly 1
1 vr setvar r
2 cvv class V
3 cps1 class PwSer 1
4 1 cv setvar r
5 4 3 cfv class PwSer 1 r
6 cress class 𝑠
7 cbs class Base
8 c1o class 1 𝑜
9 cmpl class mPoly
10 8 4 9 co class 1 𝑜 mPoly r
11 10 7 cfv class Base 1 𝑜 mPoly r
12 5 11 6 co class PwSer 1 r 𝑠 Base 1 𝑜 mPoly r
13 1 2 12 cmpt class r V PwSer 1 r 𝑠 Base 1 𝑜 mPoly r
14 0 13 wceq wff Poly 1 = r V PwSer 1 r 𝑠 Base 1 𝑜 mPoly r