Metamath Proof Explorer


Definition df-pmtr

Description: Define a function that generates the transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Assertion df-pmtr pmTrsp = d V p y 𝒫 d | y 2 𝑜 z d if z p p z z

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpmtr class pmTrsp
1 vd setvar d
2 cvv class V
3 vp setvar p
4 vy setvar y
5 1 cv setvar d
6 5 cpw class 𝒫 d
7 4 cv setvar y
8 cen class
9 c2o class 2 𝑜
10 7 9 8 wbr wff y 2 𝑜
11 10 4 6 crab class y 𝒫 d | y 2 𝑜
12 vz setvar z
13 12 cv setvar z
14 3 cv setvar p
15 13 14 wcel wff z p
16 13 csn class z
17 14 16 cdif class p z
18 17 cuni class p z
19 15 18 13 cif class if z p p z z
20 12 5 19 cmpt class z d if z p p z z
21 3 11 20 cmpt class p y 𝒫 d | y 2 𝑜 z d if z p p z z
22 1 2 21 cmpt class d V p y 𝒫 d | y 2 𝑜 z d if z p p z z
23 0 22 wceq wff pmTrsp = d V p y 𝒫 d | y 2 𝑜 z d if z p p z z