Metamath Proof Explorer


Definition df-prod

Description: Define the product of a series with an index set of integers A . This definition takes most of the aspects of df-sum and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Assertion df-prod k A B = ι x | m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m

Detailed syntax breakdown

Step Hyp Ref Expression
0 vk setvar k
1 cA class A
2 cB class B
3 1 2 0 cprod class k A B
4 vx setvar x
5 vm setvar m
6 cz class
7 cuz class
8 5 cv setvar m
9 8 7 cfv class m
10 1 9 wss wff A m
11 vn setvar n
12 vy setvar y
13 12 cv setvar y
14 cc0 class 0
15 13 14 wne wff y 0
16 11 cv setvar n
17 cmul class ×
18 0 cv setvar k
19 18 1 wcel wff k A
20 c1 class 1
21 19 2 20 cif class if k A B 1
22 0 6 21 cmpt class k if k A B 1
23 17 22 16 cseq class seq n × k if k A B 1
24 cli class
25 23 13 24 wbr wff seq n × k if k A B 1 y
26 15 25 wa wff y 0 seq n × k if k A B 1 y
27 26 12 wex wff y y 0 seq n × k if k A B 1 y
28 27 11 9 wrex wff n m y y 0 seq n × k if k A B 1 y
29 17 22 8 cseq class seq m × k if k A B 1
30 4 cv setvar x
31 29 30 24 wbr wff seq m × k if k A B 1 x
32 10 28 31 w3a wff A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x
33 32 5 6 wrex wff m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x
34 cn class
35 vf setvar f
36 35 cv setvar f
37 cfz class
38 20 8 37 co class 1 m
39 38 1 36 wf1o wff f : 1 m 1-1 onto A
40 16 36 cfv class f n
41 0 40 2 csb class f n / k B
42 11 34 41 cmpt class n f n / k B
43 17 42 20 cseq class seq 1 × n f n / k B
44 8 43 cfv class seq 1 × n f n / k B m
45 30 44 wceq wff x = seq 1 × n f n / k B m
46 39 45 wa wff f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
47 46 35 wex wff f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
48 47 5 34 wrex wff m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
49 33 48 wo wff m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
50 49 4 cio class ι x | m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
51 3 50 wceq wff k A B = ι x | m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m