Metamath Proof Explorer


Definition df-psr

Description: Define the algebra of power series over the index set i and with coefficients from the ring r . (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion df-psr mPwSer = i V , r V h 0 i | h -1 Fin / d Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmps class mPwSer
1 vi setvar i
2 cvv class V
3 vr setvar r
4 vh setvar h
5 cn0 class 0
6 cmap class 𝑚
7 1 cv setvar i
8 5 7 6 co class 0 i
9 4 cv setvar h
10 9 ccnv class h -1
11 cn class
12 10 11 cima class h -1
13 cfn class Fin
14 12 13 wcel wff h -1 Fin
15 14 4 8 crab class h 0 i | h -1 Fin
16 vd setvar d
17 cbs class Base
18 3 cv setvar r
19 18 17 cfv class Base r
20 16 cv setvar d
21 19 20 6 co class Base r d
22 vb setvar b
23 cnx class ndx
24 23 17 cfv class Base ndx
25 22 cv setvar b
26 24 25 cop class Base ndx b
27 cplusg class + 𝑔
28 23 27 cfv class + ndx
29 18 27 cfv class + r
30 29 cof class f + r
31 25 25 cxp class b × b
32 30 31 cres class f + r b × b
33 28 32 cop class + ndx f + r b × b
34 cmulr class 𝑟
35 23 34 cfv class ndx
36 vf setvar f
37 vg setvar g
38 vk setvar k
39 cgsu class Σ𝑔
40 vx setvar x
41 vy setvar y
42 41 cv setvar y
43 cle class
44 43 cofr class r
45 38 cv setvar k
46 42 45 44 wbr wff y f k
47 46 41 20 crab class y d | y f k
48 36 cv setvar f
49 40 cv setvar x
50 49 48 cfv class f x
51 18 34 cfv class r
52 37 cv setvar g
53 cmin class
54 53 cof class f
55 45 49 54 co class k f x
56 55 52 cfv class g k f x
57 50 56 51 co class f x r g k f x
58 40 47 57 cmpt class x y d | y f k f x r g k f x
59 18 58 39 co class r x y d | y f k f x r g k f x
60 38 20 59 cmpt class k d r x y d | y f k f x r g k f x
61 36 37 25 25 60 cmpo class f b , g b k d r x y d | y f k f x r g k f x
62 35 61 cop class ndx f b , g b k d r x y d | y f k f x r g k f x
63 26 33 62 ctp class Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x
64 csca class Scalar
65 23 64 cfv class Scalar ndx
66 65 18 cop class Scalar ndx r
67 cvsca class 𝑠
68 23 67 cfv class ndx
69 49 csn class x
70 20 69 cxp class d × x
71 51 cof class f r
72 70 48 71 co class d × x r f f
73 40 36 19 25 72 cmpo class x Base r , f b d × x r f f
74 68 73 cop class ndx x Base r , f b d × x r f f
75 cts class TopSet
76 23 75 cfv class TopSet ndx
77 cpt class 𝑡
78 ctopn class TopOpen
79 18 78 cfv class TopOpen r
80 79 csn class TopOpen r
81 20 80 cxp class d × TopOpen r
82 81 77 cfv class 𝑡 d × TopOpen r
83 76 82 cop class TopSet ndx 𝑡 d × TopOpen r
84 66 74 83 ctp class Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r
85 63 84 cun class Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r
86 22 21 85 csb class Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r
87 16 15 86 csb class h 0 i | h -1 Fin / d Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r
88 1 3 2 2 87 cmpo class i V , r V h 0 i | h -1 Fin / d Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r
89 0 88 wceq wff mPwSer = i V , r V h 0 i | h -1 Fin / d Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r