Metamath Proof Explorer


Definition df-psubsp

Description: Define set of all projective subspaces. Based on definition of subspace in Holland95 p. 212. (Contributed by NM, 2-Oct-2011)

Ref Expression
Assertion df-psubsp PSubSp = k V s | s Atoms k p s q s r Atoms k r k p join k q r s

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpsubsp class PSubSp
1 vk setvar k
2 cvv class V
3 vs setvar s
4 3 cv setvar s
5 catm class Atoms
6 1 cv setvar k
7 6 5 cfv class Atoms k
8 4 7 wss wff s Atoms k
9 vp setvar p
10 vq setvar q
11 vr setvar r
12 11 cv setvar r
13 cple class le
14 6 13 cfv class k
15 9 cv setvar p
16 cjn class join
17 6 16 cfv class join k
18 10 cv setvar q
19 15 18 17 co class p join k q
20 12 19 14 wbr wff r k p join k q
21 12 4 wcel wff r s
22 20 21 wi wff r k p join k q r s
23 22 11 7 wral wff r Atoms k r k p join k q r s
24 23 10 4 wral wff q s r Atoms k r k p join k q r s
25 24 9 4 wral wff p s q s r Atoms k r k p join k q r s
26 8 25 wa wff s Atoms k p s q s r Atoms k r k p join k q r s
27 26 3 cab class s | s Atoms k p s q s r Atoms k r k p join k q r s
28 1 2 27 cmpt class k V s | s Atoms k p s q s r Atoms k r k p join k q r s
29 0 28 wceq wff PSubSp = k V s | s Atoms k p s q s r Atoms k r k p join k q r s