Metamath Proof Explorer


Definition df-q1p

Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg . We actually use the reversed version for better harmony with our divisibility df-dvdsr . (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion df-q1p quot 1p = r V Poly 1 r / p Base p / b f b , g b ι q b | deg 1 r f - p q p g < deg 1 r g

Detailed syntax breakdown

Step Hyp Ref Expression
0 cq1p class quot 1p
1 vr setvar r
2 cvv class V
3 cpl1 class Poly 1
4 1 cv setvar r
5 4 3 cfv class Poly 1 r
6 vp setvar p
7 cbs class Base
8 6 cv setvar p
9 8 7 cfv class Base p
10 vb setvar b
11 vf setvar f
12 10 cv setvar b
13 vg setvar g
14 vq setvar q
15 cdg1 class deg 1
16 4 15 cfv class deg 1 r
17 11 cv setvar f
18 csg class - 𝑔
19 8 18 cfv class - p
20 14 cv setvar q
21 cmulr class 𝑟
22 8 21 cfv class p
23 13 cv setvar g
24 20 23 22 co class q p g
25 17 24 19 co class f - p q p g
26 25 16 cfv class deg 1 r f - p q p g
27 clt class <
28 23 16 cfv class deg 1 r g
29 26 28 27 wbr wff deg 1 r f - p q p g < deg 1 r g
30 29 14 12 crio class ι q b | deg 1 r f - p q p g < deg 1 r g
31 11 13 12 12 30 cmpo class f b , g b ι q b | deg 1 r f - p q p g < deg 1 r g
32 10 9 31 csb class Base p / b f b , g b ι q b | deg 1 r f - p q p g < deg 1 r g
33 6 5 32 csb class Poly 1 r / p Base p / b f b , g b ι q b | deg 1 r f - p q p g < deg 1 r g
34 1 2 33 cmpt class r V Poly 1 r / p Base p / b f b , g b ι q b | deg 1 r f - p q p g < deg 1 r g
35 0 34 wceq wff quot 1p = r V Poly 1 r / p Base p / b f b , g b ι q b | deg 1 r f - p q p g < deg 1 r g