Metamath Proof Explorer


Definition df-qtop

Description: Define the quotient topology given a function f and topology j on the domain of f . (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Assertion df-qtop qTop = j V , f V s 𝒫 f j | f -1 s j j

Detailed syntax breakdown

Step Hyp Ref Expression
0 cqtop class qTop
1 vj setvar j
2 cvv class V
3 vf setvar f
4 vs setvar s
5 3 cv setvar f
6 1 cv setvar j
7 6 cuni class j
8 5 7 cima class f j
9 8 cpw class 𝒫 f j
10 5 ccnv class f -1
11 4 cv setvar s
12 10 11 cima class f -1 s
13 12 7 cin class f -1 s j
14 13 6 wcel wff f -1 s j j
15 14 4 9 crab class s 𝒫 f j | f -1 s j j
16 1 3 2 2 15 cmpo class j V , f V s 𝒫 f j | f -1 s j j
17 0 16 wceq wff qTop = j V , f V s 𝒫 f j | f -1 s j j