Metamath Proof Explorer


Definition df-r

Description: Define the set of real numbers. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion df-r = 𝑹 × 0 𝑹

Detailed syntax breakdown

Step Hyp Ref Expression
0 cr class
1 cnr class 𝑹
2 c0r class 0 𝑹
3 2 csn class 0 𝑹
4 1 3 cxp class 𝑹 × 0 𝑹
5 0 4 wceq wff = 𝑹 × 0 𝑹