Metamath Proof Explorer


Definition df-r1p

Description: Define the remainder after dividing two univariate polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion df-r1p rem 1p = r V Base Poly 1 r / b f b , g b f - Poly 1 r f quot 1p r g Poly 1 r g

Detailed syntax breakdown

Step Hyp Ref Expression
0 cr1p class rem 1p
1 vr setvar r
2 cvv class V
3 cbs class Base
4 cpl1 class Poly 1
5 1 cv setvar r
6 5 4 cfv class Poly 1 r
7 6 3 cfv class Base Poly 1 r
8 vb setvar b
9 vf setvar f
10 8 cv setvar b
11 vg setvar g
12 9 cv setvar f
13 csg class - 𝑔
14 6 13 cfv class - Poly 1 r
15 cq1p class quot 1p
16 5 15 cfv class quot 1p r
17 11 cv setvar g
18 12 17 16 co class f quot 1p r g
19 cmulr class 𝑟
20 6 19 cfv class Poly 1 r
21 18 17 20 co class f quot 1p r g Poly 1 r g
22 12 21 14 co class f - Poly 1 r f quot 1p r g Poly 1 r g
23 9 11 10 10 22 cmpo class f b , g b f - Poly 1 r f quot 1p r g Poly 1 r g
24 8 7 23 csb class Base Poly 1 r / b f b , g b f - Poly 1 r f quot 1p r g Poly 1 r g
25 1 2 24 cmpt class r V Base Poly 1 r / b f b , g b f - Poly 1 r f quot 1p r g Poly 1 r g
26 0 25 wceq wff rem 1p = r V Base Poly 1 r / b f b , g b f - Poly 1 r f quot 1p r g Poly 1 r g