Metamath Proof Explorer


Definition df-rest

Description: Function returning the subspace topology induced by the topology y and the set x . (Contributed by FL, 20-Sep-2010) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion df-rest 𝑡 = j V , x V ran y j y x

Detailed syntax breakdown

Step Hyp Ref Expression
0 crest class 𝑡
1 vj setvar j
2 cvv class V
3 vx setvar x
4 vy setvar y
5 1 cv setvar j
6 4 cv setvar y
7 3 cv setvar x
8 6 7 cin class y x
9 4 5 8 cmpt class y j y x
10 9 crn class ran y j y x
11 1 3 2 2 10 cmpo class j V , x V ran y j y x
12 0 11 wceq wff 𝑡 = j V , x V ran y j y x