Metamath Proof Explorer


Definition df-risc

Description: Define the ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Assertion df-risc 𝑟 = r s | r RingOps s RingOps f f r RngIso s

Detailed syntax breakdown

Step Hyp Ref Expression
0 crisc class 𝑟
1 vr setvar r
2 vs setvar s
3 1 cv setvar r
4 crngo class RingOps
5 3 4 wcel wff r RingOps
6 2 cv setvar s
7 6 4 wcel wff s RingOps
8 5 7 wa wff r RingOps s RingOps
9 vf setvar f
10 9 cv setvar f
11 crngiso class RngIso
12 3 6 11 co class r RngIso s
13 10 12 wcel wff f r RngIso s
14 13 9 wex wff f f r RngIso s
15 8 14 wa wff r RingOps s RingOps f f r RngIso s
16 15 1 2 copab class r s | r RingOps s RingOps f f r RngIso s
17 0 16 wceq wff 𝑟 = r s | r RingOps s RingOps f f r RngIso s