Metamath Proof Explorer


Definition df-rlreg

Description: Define the set ofleft-regular elements in a ring as those elements which are not left zero divisors, meaning that multiplying a nonzero element on the left by a left-regular element gives a nonzero product. (Contributed by Stefan O'Rear, 22-Mar-2015)

Ref Expression
Assertion df-rlreg RLReg = r V x Base r | y Base r x r y = 0 r y = 0 r

Detailed syntax breakdown

Step Hyp Ref Expression
0 crlreg class RLReg
1 vr setvar r
2 cvv class V
3 vx setvar x
4 cbs class Base
5 1 cv setvar r
6 5 4 cfv class Base r
7 vy setvar y
8 3 cv setvar x
9 cmulr class 𝑟
10 5 9 cfv class r
11 7 cv setvar y
12 8 11 10 co class x r y
13 c0g class 0 𝑔
14 5 13 cfv class 0 r
15 12 14 wceq wff x r y = 0 r
16 11 14 wceq wff y = 0 r
17 15 16 wi wff x r y = 0 r y = 0 r
18 17 7 6 wral wff y Base r x r y = 0 r y = 0 r
19 18 3 6 crab class x Base r | y Base r x r y = 0 r y = 0 r
20 1 2 19 cmpt class r V x Base r | y Base r x r y = 0 r y = 0 r
21 0 20 wceq wff RLReg = r V x Base r | y Base r x r y = 0 r y = 0 r