Metamath Proof Explorer


Definition df-rmx

Description: Define the X sequence as the rational part of some solution of a special Pell equation. See frmx and rmxyval for a more useful but non-eliminable definition. (Contributed by Stefan O'Rear, 21-Sep-2014)

Ref Expression
Assertion df-rmx X rm = a 2 , n 1 st b 0 × 1 st b + a 2 1 2 nd b -1 a + a 2 1 n

Detailed syntax breakdown

Step Hyp Ref Expression
0 crmx class X rm
1 va setvar a
2 cuz class
3 c2 class 2
4 3 2 cfv class 2
5 vn setvar n
6 cz class
7 c1st class 1 st
8 vb setvar b
9 cn0 class 0
10 9 6 cxp class 0 ×
11 8 cv setvar b
12 11 7 cfv class 1 st b
13 caddc class +
14 csqrt class
15 1 cv setvar a
16 cexp class ^
17 15 3 16 co class a 2
18 cmin class
19 c1 class 1
20 17 19 18 co class a 2 1
21 20 14 cfv class a 2 1
22 cmul class ×
23 c2nd class 2 nd
24 11 23 cfv class 2 nd b
25 21 24 22 co class a 2 1 2 nd b
26 12 25 13 co class 1 st b + a 2 1 2 nd b
27 8 10 26 cmpt class b 0 × 1 st b + a 2 1 2 nd b
28 27 ccnv class b 0 × 1 st b + a 2 1 2 nd b -1
29 15 21 13 co class a + a 2 1
30 5 cv setvar n
31 29 30 16 co class a + a 2 1 n
32 31 28 cfv class b 0 × 1 st b + a 2 1 2 nd b -1 a + a 2 1 n
33 32 7 cfv class 1 st b 0 × 1 st b + a 2 1 2 nd b -1 a + a 2 1 n
34 1 5 4 6 33 cmpo class a 2 , n 1 st b 0 × 1 st b + a 2 1 2 nd b -1 a + a 2 1 n
35 0 34 wceq wff X rm = a 2 , n 1 st b 0 × 1 st b + a 2 1 2 nd b -1 a + a 2 1 n