Metamath Proof Explorer


Definition df-rmy

Description: Define the X sequence as the irrational part of some solution of a special Pell equation. See frmy and rmxyval for a more useful but non-eliminable definition. (Contributed by Stefan O'Rear, 21-Sep-2014)

Ref Expression
Assertion df-rmy Y rm = a 2 , n 2 nd b 0 × 1 st b + a 2 1 2 nd b -1 a + a 2 1 n

Detailed syntax breakdown

Step Hyp Ref Expression
0 crmy class Y rm
1 va setvar a
2 cuz class
3 c2 class 2
4 3 2 cfv class 2
5 vn setvar n
6 cz class
7 c2nd class 2 nd
8 vb setvar b
9 cn0 class 0
10 9 6 cxp class 0 ×
11 c1st class 1 st
12 8 cv setvar b
13 12 11 cfv class 1 st b
14 caddc class +
15 csqrt class
16 1 cv setvar a
17 cexp class ^
18 16 3 17 co class a 2
19 cmin class
20 c1 class 1
21 18 20 19 co class a 2 1
22 21 15 cfv class a 2 1
23 cmul class ×
24 12 7 cfv class 2 nd b
25 22 24 23 co class a 2 1 2 nd b
26 13 25 14 co class 1 st b + a 2 1 2 nd b
27 8 10 26 cmpt class b 0 × 1 st b + a 2 1 2 nd b
28 27 ccnv class b 0 × 1 st b + a 2 1 2 nd b -1
29 16 22 14 co class a + a 2 1
30 5 cv setvar n
31 29 30 17 co class a + a 2 1 n
32 31 28 cfv class b 0 × 1 st b + a 2 1 2 nd b -1 a + a 2 1 n
33 32 7 cfv class 2 nd b 0 × 1 st b + a 2 1 2 nd b -1 a + a 2 1 n
34 1 5 4 6 33 cmpo class a 2 , n 2 nd b 0 × 1 st b + a 2 1 2 nd b -1 a + a 2 1 n
35 0 34 wceq wff Y rm = a 2 , n 2 nd b 0 × 1 st b + a 2 1 2 nd b -1 a + a 2 1 n