Metamath Proof Explorer


Definition df-rnghom

Description: Define the set of ring homomorphisms from r to s . (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Assertion df-rnghom RingHom = r Ring , s Ring Base r / v Base s / w f w v | f 1 r = 1 s x v y v f x + r y = f x + s f y f x r y = f x s f y

Detailed syntax breakdown

Step Hyp Ref Expression
0 crh class RingHom
1 vr setvar r
2 crg class Ring
3 vs setvar s
4 cbs class Base
5 1 cv setvar r
6 5 4 cfv class Base r
7 vv setvar v
8 3 cv setvar s
9 8 4 cfv class Base s
10 vw setvar w
11 vf setvar f
12 10 cv setvar w
13 cmap class 𝑚
14 7 cv setvar v
15 12 14 13 co class w v
16 11 cv setvar f
17 cur class 1 r
18 5 17 cfv class 1 r
19 18 16 cfv class f 1 r
20 8 17 cfv class 1 s
21 19 20 wceq wff f 1 r = 1 s
22 vx setvar x
23 vy setvar y
24 22 cv setvar x
25 cplusg class + 𝑔
26 5 25 cfv class + r
27 23 cv setvar y
28 24 27 26 co class x + r y
29 28 16 cfv class f x + r y
30 24 16 cfv class f x
31 8 25 cfv class + s
32 27 16 cfv class f y
33 30 32 31 co class f x + s f y
34 29 33 wceq wff f x + r y = f x + s f y
35 cmulr class 𝑟
36 5 35 cfv class r
37 24 27 36 co class x r y
38 37 16 cfv class f x r y
39 8 35 cfv class s
40 30 32 39 co class f x s f y
41 38 40 wceq wff f x r y = f x s f y
42 34 41 wa wff f x + r y = f x + s f y f x r y = f x s f y
43 42 23 14 wral wff y v f x + r y = f x + s f y f x r y = f x s f y
44 43 22 14 wral wff x v y v f x + r y = f x + s f y f x r y = f x s f y
45 21 44 wa wff f 1 r = 1 s x v y v f x + r y = f x + s f y f x r y = f x s f y
46 45 11 15 crab class f w v | f 1 r = 1 s x v y v f x + r y = f x + s f y f x r y = f x s f y
47 10 9 46 csb class Base s / w f w v | f 1 r = 1 s x v y v f x + r y = f x + s f y f x r y = f x s f y
48 7 6 47 csb class Base r / v Base s / w f w v | f 1 r = 1 s x v y v f x + r y = f x + s f y f x r y = f x s f y
49 1 3 2 2 48 cmpo class r Ring , s Ring Base r / v Base s / w f w v | f 1 r = 1 s x v y v f x + r y = f x + s f y f x r y = f x s f y
50 0 49 wceq wff RingHom = r Ring , s Ring Base r / v Base s / w f w v | f 1 r = 1 s x v y v f x + r y = f x + s f y f x r y = f x s f y