Metamath Proof Explorer


Definition df-rngohom

Description: Define the function which gives the set of ring homomorphisms between two given rings. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Assertion df-rngohom RngHom = r RingOps , s RingOps f ran 1 st s ran 1 st r | f GId 2 nd r = GId 2 nd s x ran 1 st r y ran 1 st r f x 1 st r y = f x 1 st s f y f x 2 nd r y = f x 2 nd s f y

Detailed syntax breakdown

Step Hyp Ref Expression
0 crnghom class RngHom
1 vr setvar r
2 crngo class RingOps
3 vs setvar s
4 vf setvar f
5 c1st class 1 st
6 3 cv setvar s
7 6 5 cfv class 1 st s
8 7 crn class ran 1 st s
9 cmap class 𝑚
10 1 cv setvar r
11 10 5 cfv class 1 st r
12 11 crn class ran 1 st r
13 8 12 9 co class ran 1 st s ran 1 st r
14 4 cv setvar f
15 cgi class GId
16 c2nd class 2 nd
17 10 16 cfv class 2 nd r
18 17 15 cfv class GId 2 nd r
19 18 14 cfv class f GId 2 nd r
20 6 16 cfv class 2 nd s
21 20 15 cfv class GId 2 nd s
22 19 21 wceq wff f GId 2 nd r = GId 2 nd s
23 vx setvar x
24 vy setvar y
25 23 cv setvar x
26 24 cv setvar y
27 25 26 11 co class x 1 st r y
28 27 14 cfv class f x 1 st r y
29 25 14 cfv class f x
30 26 14 cfv class f y
31 29 30 7 co class f x 1 st s f y
32 28 31 wceq wff f x 1 st r y = f x 1 st s f y
33 25 26 17 co class x 2 nd r y
34 33 14 cfv class f x 2 nd r y
35 29 30 20 co class f x 2 nd s f y
36 34 35 wceq wff f x 2 nd r y = f x 2 nd s f y
37 32 36 wa wff f x 1 st r y = f x 1 st s f y f x 2 nd r y = f x 2 nd s f y
38 37 24 12 wral wff y ran 1 st r f x 1 st r y = f x 1 st s f y f x 2 nd r y = f x 2 nd s f y
39 38 23 12 wral wff x ran 1 st r y ran 1 st r f x 1 st r y = f x 1 st s f y f x 2 nd r y = f x 2 nd s f y
40 22 39 wa wff f GId 2 nd r = GId 2 nd s x ran 1 st r y ran 1 st r f x 1 st r y = f x 1 st s f y f x 2 nd r y = f x 2 nd s f y
41 40 4 13 crab class f ran 1 st s ran 1 st r | f GId 2 nd r = GId 2 nd s x ran 1 st r y ran 1 st r f x 1 st r y = f x 1 st s f y f x 2 nd r y = f x 2 nd s f y
42 1 3 2 2 41 cmpo class r RingOps , s RingOps f ran 1 st s ran 1 st r | f GId 2 nd r = GId 2 nd s x ran 1 st r y ran 1 st r f x 1 st r y = f x 1 st s f y f x 2 nd r y = f x 2 nd s f y
43 0 42 wceq wff RngHom = r RingOps , s RingOps f ran 1 st s ran 1 st r | f GId 2 nd r = GId 2 nd s x ran 1 st r y ran 1 st r f x 1 st r y = f x 1 st s f y f x 2 nd r y = f x 2 nd s f y