Metamath Proof Explorer


Definition df-rpss

Description: Define a relation which corresponds to proper subsethood df-pss on sets. This allows us to use proper subsethood with general concepts that require relations, such as strict ordering, see sorpss . (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion df-rpss [⊂] = x y | x y

Detailed syntax breakdown

Step Hyp Ref Expression
0 crpss class [⊂]
1 vx setvar x
2 vy setvar y
3 1 cv setvar x
4 2 cv setvar y
5 3 4 wpss wff x y
6 5 1 2 copab class x y | x y
7 0 6 wceq wff [⊂] = x y | x y