Database
BASIC LINEAR ALGEBRA
Matrices
The subalgebras of diagonal and scalar matrices
df-scmat
Metamath Proof Explorer
Description: Define the algebra of n x n scalar matrices over a set (usually a ring)
r, see definition in Connell p. 57: "Ascalar matrix is a diagonal
matrix for which all the diagonal terms are equal, i.e., a matrix of the
form cI_n". (Contributed by AV , 8-Dec-2019)
Ref
Expression
Assertion
df-scmat
⊢ ScMat = n ∈ Fin , r ∈ V ⟼ ⦋ n Mat r / a ⦌ m ∈ Base a | ∃ c ∈ Base r m = c ⋅ a 1 a
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cscmat
class ScMat
1
vn
setvar n
2
cfn
class Fin
3
vr
setvar r
4
cvv
class V
5
1
cv
setvar n
6
cmat
class Mat
7
3
cv
setvar r
8
5 7 6
co
class n Mat r
9
va
setvar a
10
vm
setvar m
11
cbs
class Base
12
9
cv
setvar a
13
12 11
cfv
class Base a
14
vc
setvar c
15
7 11
cfv
class Base r
16
10
cv
setvar m
17
14
cv
setvar c
18
cvsca
class ⋅ 𝑠
19
12 18
cfv
class ⋅ a
20
cur
class 1 r
21
12 20
cfv
class 1 a
22
17 21 19
co
class c ⋅ a 1 a
23
16 22
wceq
wff m = c ⋅ a 1 a
24
23 14 15
wrex
wff ∃ c ∈ Base r m = c ⋅ a 1 a
25
24 10 13
crab
class m ∈ Base a | ∃ c ∈ Base r m = c ⋅ a 1 a
26
9 8 25
csb
class ⦋ n Mat r / a ⦌ m ∈ Base a | ∃ c ∈ Base r m = c ⋅ a 1 a
27
1 3 2 4 26
cmpo
class n ∈ Fin , r ∈ V ⟼ ⦋ n Mat r / a ⦌ m ∈ Base a | ∃ c ∈ Base r m = c ⋅ a 1 a
28
0 27
wceq
wff ScMat = n ∈ Fin , r ∈ V ⟼ ⦋ n Mat r / a ⦌ m ∈ Base a | ∃ c ∈ Base r m = c ⋅ a 1 a