Metamath Proof Explorer


Definition df-scmat

Description: Define the algebra of n x n scalar matrices over a set (usually a ring) r, see definition in Connell p. 57: "Ascalar matrix is a diagonal matrix for which all the diagonal terms are equal, i.e., a matrix of the form cI_n". (Contributed by AV, 8-Dec-2019)

Ref Expression
Assertion df-scmat ScMat=nFin,rVnMatr/amBasea|cBaserm=ca1a

Detailed syntax breakdown

Step Hyp Ref Expression
0 cscmat classScMat
1 vn setvarn
2 cfn classFin
3 vr setvarr
4 cvv classV
5 1 cv setvarn
6 cmat classMat
7 3 cv setvarr
8 5 7 6 co classnMatr
9 va setvara
10 vm setvarm
11 cbs classBase
12 9 cv setvara
13 12 11 cfv classBasea
14 vc setvarc
15 7 11 cfv classBaser
16 10 cv setvarm
17 14 cv setvarc
18 cvsca class𝑠
19 12 18 cfv classa
20 cur class1r
21 12 20 cfv class1a
22 17 21 19 co classca1a
23 16 22 wceq wffm=ca1a
24 23 14 15 wrex wffcBaserm=ca1a
25 24 10 13 crab classmBasea|cBaserm=ca1a
26 9 8 25 csb classnMatr/amBasea|cBaserm=ca1a
27 1 3 2 4 26 cmpo classnFin,rVnMatr/amBasea|cBaserm=ca1a
28 0 27 wceq wffScMat=nFin,rVnMatr/amBasea|cBaserm=ca1a