Metamath Proof Explorer


Definition df-se

Description: Define the set-like predicate. (Contributed by Mario Carneiro, 19-Nov-2014)

Ref Expression
Assertion df-se R Se A x A y A | y R x V

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR class R
1 cA class A
2 1 0 wse wff R Se A
3 vx setvar x
4 vy setvar y
5 4 cv setvar y
6 3 cv setvar x
7 5 6 0 wbr wff y R x
8 7 4 1 crab class y A | y R x
9 cvv class V
10 8 9 wcel wff y A | y R x V
11 10 3 1 wral wff x A y A | y R x V
12 2 11 wb wff R Se A x A y A | y R x V