Metamath Proof Explorer


Definition df-seqom

Description: Index-aware recursive definitions over _om . A mashup of df-rdg and df-seq , this allows for recursive definitions that use an index in the recursion in cases where Infinity is not admitted. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Assertion df-seqom seq ω F I = rec i ω , v V suc i i F v I I ω

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF class F
1 cI class I
2 0 1 cseqom class seq ω F I
3 vi setvar i
4 com class ω
5 vv setvar v
6 cvv class V
7 3 cv setvar i
8 7 csuc class suc i
9 5 cv setvar v
10 7 9 0 co class i F v
11 8 10 cop class suc i i F v
12 3 5 4 6 11 cmpo class i ω , v V suc i i F v
13 c0 class
14 cid class I
15 1 14 cfv class I I
16 13 15 cop class I I
17 12 16 crdg class rec i ω , v V suc i i F v I I
18 17 4 cima class rec i ω , v V suc i i F v I I ω
19 2 18 wceq wff seq ω F I = rec i ω , v V suc i i F v I I ω