Metamath Proof Explorer


Definition df-sgm

Description: Define the sum of positive divisors function ( x sigma n ) , which is the sum of the xth powers of the positive integer divisors of n, see definition in ApostolNT p. 38. For x = 0 , ( x sigma n ) counts the number of divisors of n , i.e. ( 0 sigma n ) isthe divisor function, see remark in ApostolNT p. 38. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion df-sgm σ = x , n k p | p n k x

Detailed syntax breakdown

Step Hyp Ref Expression
0 csgm class σ
1 vx setvar x
2 cc class
3 vn setvar n
4 cn class
5 vk setvar k
6 vp setvar p
7 6 cv setvar p
8 cdvds class
9 3 cv setvar n
10 7 9 8 wbr wff p n
11 10 6 4 crab class p | p n
12 5 cv setvar k
13 ccxp class c
14 1 cv setvar x
15 12 14 13 co class k x
16 11 15 5 csu class k p | p n k x
17 1 3 2 4 16 cmpo class x , n k p | p n k x
18 0 17 wceq wff σ = x , n k p | p n k x