Database COMPLEX HILBERT SPACE EXPLORER (DEPRECATED) Subspaces and projections Subspace sum, span, lattice join, lattice supremum df-shs  
				
		 
		
			
		 
		Description:   Define subspace sum in SH  .  See shsval  , shsval2i  , and
       shsval3i  for its value.  (Contributed by NM , 16-Oct-1999) 
       (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-shs   ⊢   +  ℋ =    x  ∈  S  ℋ ,  y  ∈  S  ℋ ⟼   +  ℎ  x  ×  y             
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cph  class  +  ℋ    
						
							1 
								
							 
							vx  setvar  x    
						
							2 
								
							 
							csh  class  S  ℋ    
						
							3 
								
							 
							vy  setvar  y    
						
							4 
								
							 
							cva  class  +  ℎ    
						
							5 
								1 
							 
							cv  setvar  x    
						
							6 
								3 
							 
							cv  setvar  y    
						
							7 
								5  6 
							 
							cxp  class   x  ×  y      
						
							8 
								4  7 
							 
							cima  class   +  ℎ  x  ×  y       
						
							9 
								1  3  2  2  8 
							 
							cmpo  class    x  ∈  S  ℋ ,  y  ∈  S  ℋ ⟼   +  ℎ  x  ×  y          
						
							10 
								0  9 
							 
							wceq  wff   +  ℋ =    x  ∈  S  ℋ ,  y  ∈  S  ℋ ⟼   +  ℎ  x  ×  y