Metamath Proof Explorer


Definition df-sin

Description: Define the sine function. (Contributed by NM, 14-Mar-2005)

Ref Expression
Assertion df-sin sin = x e i x e i x 2 i

Detailed syntax breakdown

Step Hyp Ref Expression
0 csin class sin
1 vx setvar x
2 cc class
3 ce class exp
4 ci class i
5 cmul class ×
6 1 cv setvar x
7 4 6 5 co class i x
8 7 3 cfv class e i x
9 cmin class
10 4 cneg class i
11 10 6 5 co class i x
12 11 3 cfv class e i x
13 8 12 9 co class e i x e i x
14 cdiv class ÷
15 c2 class 2
16 15 4 5 co class 2 i
17 13 16 14 co class e i x e i x 2 i
18 1 2 17 cmpt class x e i x e i x 2 i
19 0 18 wceq wff sin = x e i x e i x 2 i