Metamath Proof Explorer


Definition df-subc

Description: ( SubcatC ) is the set of all the subcategory specifications of the category C . Like df-subg , this is not actually a collection of categories (as in definition 4.1(a) of Adamek p. 48), but only sets which when given operations from the base category (using df-resc ) form a category. All the objects and all the morphisms of the subcategory belong to the supercategory. The identity of an object, the domain and the codomain of a morphism are the same in the subcategory and the supercategory. The composition of the subcategory is a restriction of the composition of the supercategory. (Contributed by FL, 17-Sep-2009) (Revised by Mario Carneiro, 4-Jan-2017)

Ref Expression
Assertion df-subc Subcat = c Cat h | h cat Hom 𝑓 c [˙ dom dom h / s]˙ x s Id c x x h x y s z s f x h y g y h z g x y comp c z f x h z

Detailed syntax breakdown

Step Hyp Ref Expression
0 csubc class Subcat
1 vc setvar c
2 ccat class Cat
3 vh setvar h
4 3 cv setvar h
5 cssc class cat
6 chomf class Hom 𝑓
7 1 cv setvar c
8 7 6 cfv class Hom 𝑓 c
9 4 8 5 wbr wff h cat Hom 𝑓 c
10 4 cdm class dom h
11 10 cdm class dom dom h
12 vs setvar s
13 vx setvar x
14 12 cv setvar s
15 ccid class Id
16 7 15 cfv class Id c
17 13 cv setvar x
18 17 16 cfv class Id c x
19 17 17 4 co class x h x
20 18 19 wcel wff Id c x x h x
21 vy setvar y
22 vz setvar z
23 vf setvar f
24 21 cv setvar y
25 17 24 4 co class x h y
26 vg setvar g
27 22 cv setvar z
28 24 27 4 co class y h z
29 26 cv setvar g
30 17 24 cop class x y
31 cco class comp
32 7 31 cfv class comp c
33 30 27 32 co class x y comp c z
34 23 cv setvar f
35 29 34 33 co class g x y comp c z f
36 17 27 4 co class x h z
37 35 36 wcel wff g x y comp c z f x h z
38 37 26 28 wral wff g y h z g x y comp c z f x h z
39 38 23 25 wral wff f x h y g y h z g x y comp c z f x h z
40 39 22 14 wral wff z s f x h y g y h z g x y comp c z f x h z
41 40 21 14 wral wff y s z s f x h y g y h z g x y comp c z f x h z
42 20 41 wa wff Id c x x h x y s z s f x h y g y h z g x y comp c z f x h z
43 42 13 14 wral wff x s Id c x x h x y s z s f x h y g y h z g x y comp c z f x h z
44 43 12 11 wsbc wff [˙ dom dom h / s]˙ x s Id c x x h x y s z s f x h y g y h z g x y comp c z f x h z
45 9 44 wa wff h cat Hom 𝑓 c [˙ dom dom h / s]˙ x s Id c x x h x y s z s f x h y g y h z g x y comp c z f x h z
46 45 3 cab class h | h cat Hom 𝑓 c [˙ dom dom h / s]˙ x s Id c x x h x y s z s f x h y g y h z g x y comp c z f x h z
47 1 2 46 cmpt class c Cat h | h cat Hom 𝑓 c [˙ dom dom h / s]˙ x s Id c x x h x y s z s f x h y g y h z g x y comp c z f x h z
48 0 47 wceq wff Subcat = c Cat h | h cat Hom 𝑓 c [˙ dom dom h / s]˙ x s Id c x x h x y s z s f x h y g y h z g x y comp c z f x h z