Metamath Proof Explorer


Definition df-tan

Description: Define the tangent function. We define it this way for cmpt , which requires the form ( x e. A |-> B ) . (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Assertion df-tan tan = x cos -1 0 sin x cos x

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctan class tan
1 vx setvar x
2 ccos class cos
3 2 ccnv class cos -1
4 cc class
5 cc0 class 0
6 5 csn class 0
7 4 6 cdif class 0
8 3 7 cima class cos -1 0
9 csin class sin
10 1 cv setvar x
11 10 9 cfv class sin x
12 cdiv class ÷
13 10 2 cfv class cos x
14 11 13 12 co class sin x cos x
15 1 8 14 cmpt class x cos -1 0 sin x cos x
16 0 15 wceq wff tan = x cos -1 0 sin x cos x