Metamath Proof Explorer


Definition df-tayl

Description: Define the Taylor polynomial or Taylor series of a function. TODO-AV: n e. ( NN0 u. { +oo } ) should be replaced by n e. NN0* . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Assertion df-tayl Tayl = s , f 𝑝𝑚 s n 0 +∞ , a k 0 n dom s D n f k x x × fld tsums k 0 n s D n f k a k ! x a k

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctayl class Tayl
1 vs setvar s
2 cr class
3 cc class
4 2 3 cpr class
5 vf setvar f
6 cpm class 𝑝𝑚
7 1 cv setvar s
8 3 7 6 co class 𝑝𝑚 s
9 vn setvar n
10 cn0 class 0
11 cpnf class +∞
12 11 csn class +∞
13 10 12 cun class 0 +∞
14 va setvar a
15 vk setvar k
16 cc0 class 0
17 cicc class .
18 9 cv setvar n
19 16 18 17 co class 0 n
20 cz class
21 19 20 cin class 0 n
22 cdvn class D n
23 5 cv setvar f
24 7 23 22 co class s D n f
25 15 cv setvar k
26 25 24 cfv class s D n f k
27 26 cdm class dom s D n f k
28 15 21 27 ciin class k 0 n dom s D n f k
29 vx setvar x
30 29 cv setvar x
31 30 csn class x
32 ccnfld class fld
33 ctsu class tsums
34 14 cv setvar a
35 34 26 cfv class s D n f k a
36 cdiv class ÷
37 cfa class !
38 25 37 cfv class k !
39 35 38 36 co class s D n f k a k !
40 cmul class ×
41 cmin class
42 30 34 41 co class x a
43 cexp class ^
44 42 25 43 co class x a k
45 39 44 40 co class s D n f k a k ! x a k
46 15 21 45 cmpt class k 0 n s D n f k a k ! x a k
47 32 46 33 co class fld tsums k 0 n s D n f k a k ! x a k
48 31 47 cxp class x × fld tsums k 0 n s D n f k a k ! x a k
49 29 3 48 ciun class x x × fld tsums k 0 n s D n f k a k ! x a k
50 9 14 13 28 49 cmpo class n 0 +∞ , a k 0 n dom s D n f k x x × fld tsums k 0 n s D n f k a k ! x a k
51 1 5 4 8 50 cmpo class s , f 𝑝𝑚 s n 0 +∞ , a k 0 n dom s D n f k x x × fld tsums k 0 n s D n f k a k ! x a k
52 0 51 wceq wff Tayl = s , f 𝑝𝑚 s n 0 +∞ , a k 0 n dom s D n f k x x × fld tsums k 0 n s D n f k a k ! x a k