Metamath Proof Explorer


Definition df-tcph

Description: Define a function to augment a pre-Hilbert space with a norm. No extra parameters are needed, but some conditions must be satisfied to ensure that this in fact creates a normed subcomplex pre-Hilbert space (see tcphcph ). (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Assertion df-tcph toCPreHil = w V w toNrmGrp x Base w x 𝑖 w x

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctcph class toCPreHil
1 vw setvar w
2 cvv class V
3 1 cv setvar w
4 ctng class toNrmGrp
5 vx setvar x
6 cbs class Base
7 3 6 cfv class Base w
8 csqrt class
9 5 cv setvar x
10 cip class 𝑖
11 3 10 cfv class 𝑖 w
12 9 9 11 co class x 𝑖 w x
13 12 8 cfv class x 𝑖 w x
14 5 7 13 cmpt class x Base w x 𝑖 w x
15 3 14 4 co class w toNrmGrp x Base w x 𝑖 w x
16 1 2 15 cmpt class w V w toNrmGrp x Base w x 𝑖 w x
17 0 16 wceq wff toCPreHil = w V w toNrmGrp x Base w x 𝑖 w x