Metamath Proof Explorer


Definition df-thl

Description: Define the Hilbert lattice of closed subspaces of a given pre-Hilbert space. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Assertion df-thl toHL = h V toInc ClSubSp h sSet oc ndx ocv h

Detailed syntax breakdown

Step Hyp Ref Expression
0 cthl class toHL
1 vh setvar h
2 cvv class V
3 cipo class toInc
4 ccss class ClSubSp
5 1 cv setvar h
6 5 4 cfv class ClSubSp h
7 6 3 cfv class toInc ClSubSp h
8 csts class sSet
9 coc class oc
10 cnx class ndx
11 10 9 cfv class oc ndx
12 cocv class ocv
13 5 12 cfv class ocv h
14 11 13 cop class oc ndx ocv h
15 7 14 8 co class toInc ClSubSp h sSet oc ndx ocv h
16 1 2 15 cmpt class h V toInc ClSubSp h sSet oc ndx ocv h
17 0 16 wceq wff toHL = h V toInc ClSubSp h sSet oc ndx ocv h