Metamath Proof Explorer


Definition df-thl

Description: Define the Hilbert lattice of closed subspaces of a given pre-Hilbert space. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Assertion df-thl toHL=hVtoIncClSubSphsSetocndxocvh

Detailed syntax breakdown

Step Hyp Ref Expression
0 cthl classtoHL
1 vh setvarh
2 cvv classV
3 cipo classtoInc
4 ccss classClSubSp
5 1 cv setvarh
6 5 4 cfv classClSubSph
7 6 3 cfv classtoIncClSubSph
8 csts classsSet
9 coc classoc
10 cnx classndx
11 10 9 cfv classocndx
12 cocv classocv
13 5 12 cfv classocvh
14 11 13 cop classocndxocvh
15 7 14 8 co classtoIncClSubSphsSetocndxocvh
16 1 2 15 cmpt classhVtoIncClSubSphsSetocndxocvh
17 0 16 wceq wfftoHL=hVtoIncClSubSphsSetocndxocvh